organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Deoxy-1-fluoro-L-galactitol

Sarah F. Jenkinson,^a* Daniel Best,^a Ken Izumori,^b Francis X. Wilson,^c Alexander C. Weymouth-Wilson,^d George W. I. Fleet^a and Amber L. Thompson^e

^aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, ^bRare Sugar Research Centre, Kagawa University, 2393 Miki-cho, Kita-gun, Kagawa 761-0795, Japan, ^cSummit PLC, 91 Milton Park, Abingdon, Oxon, OX14 4RY, England, ^dDextra Laboratories Ltd, Science and Technology Centre, Whiteknights Road, Reading RG6 6BZ, England, and ^eDepartment of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

Received 23 April 2010; accepted 6 May 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.004 Å; R factor = 0.040; wR factor = 0.095; data-to-parameter ratio = 8.7.

The crystal structure unequivocally confirms the relative stereochemistry of the title compound, $C_6H_{13}FO_5$ [6-deoxy-6-fluoro-D-galactitol or (2*S*,3*R*,4*R*,5*S*)-6-fluorohexane-1,2,3,4,5-pentaol]. The absolute stereochemistry was determined from the use of D-galactose as the starting material. In the crystal, the molecules are linked by $O-H\cdots O$ and $O-H\cdots F$ hydrogen bonds, forming a three-dimensional network with each molecule acting as a donor and acceptor for five hydrogen bonds.

Related literature

For literature regarding fluorogalactitol and fluorogalactose, see: Kent & Wright (1972); Jenkinson *et al.* (2010).

a = 4.7968 (3) Å

b = 8.5957 (5) Å

c = 9.8194 (7) Å

Experimental

Crystal data $C_6H_{13}FO_5$ $M_r = 184.16$ Monoclinic, $P2_1$

$\beta = 103.233 \ (3)^{\circ}$
$V = 394.12 (4) \text{ Å}^3$
Z = 2
Mo $K\alpha$ radiation

Data collection

Area diffractometer Absorption correction: multi-scan (*DENZO/SCALEPACK*; Otwinowski & Minor, 1997) $T_{min} = 0.88, T_{max} = 0.99$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.095$ S = 0.99947 reflections 109 parameters $\mu = 0.15 \text{ mm}^{-1}$ T = 150 K $0.40 \times 0.10 \times 0.05 \text{ mm}$

3069 measured reflections 947 independent reflections 788 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.039$

 $\begin{array}{l} 1 \text{ restraint} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{\text{max}} = 0.35 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{\text{min}} = -0.36 \text{ e } \text{ Å}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O4-H41\cdots O8^{i}$	0.82	1.94	2.738 (4)	165
$O10-H101\cdots O12^{ii}$	0.82	1.95	2.730 (4)	160
$O8-H81\cdots O10^{iii}$	0.82	1.87	2.691 (4)	172
$O6-H61\cdots O4^{iv}$	0.82	1.89	2.703 (4)	170
$O12-H121\cdots F1^{v}$	0.84	2.08	2.895 (3)	163

Symmetry codes: (i) $-x + 2, y - \frac{1}{2}, -z + 1$; (ii) $-x + 1, y + \frac{1}{2}, -z$; (iii) x + 1, y, z; (iv) x - 1, y, z; (v) x - 1, y, z - 1.

Data collection: *COLLECT* (Nonius, 2001); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5036).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Jenkinson, S. F., Best, D., Izumori, K., Wilson, F. X., Weymouth-Wilson, A. C., Fleet, G. W. J. & Thompson, A. L. (2010). Acta Cryst. E66. LH5035
- Kent, P. W. & Wright, J. R. (1972). Carbohydr. Res. 22, 193-200.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

supplementary materials

Acta Cryst. (2010). E66, o1330 [doi:10.1107/S1600536810016624]

1-Deoxy-1-fluoro-L-galactitol

S. F. Jenkinson, D. Best, K. Izumori, F. X. Wilson, A. C. Weymouth-Wilson, G. W. J. Fleet and A. L. Thompson

Comment

1-Deoxy-1-fluoro-L-galactitol [6-deoxy-6-fluoro-D-galactitol, (2S,3R,4R,5S)-6-fluorohexane-1,2,3,4,5-pentaol] **3** was prepared in 88% yield by reduction of 6-deoxy-6-fluoro-D-galactose **2**, itself readily available from D-galactose (Jenkinson *et al.*, 2010) with sodium borohydride in water (see fig. 1).

1-Deoxy-1-fluoro-L-galactitol **3** (Fig. 2) exists as an extensively hydrogen bonded lattice with each molecule acting as a donor and acceptor for 5 hydrogen bonds (Fig. 3 and Fig. 4). Only classical hydrogen bonding is considered.

Experimental

The title compound was recrystallised by vapour diffusion from a mixture of methanol and water: m.p. 445-447 K, $[\alpha]_D^{25}$ +4.1 (*c* 1.06, H₂O) {Lit. (Kent & Wright, 1972) m.p. 446-447 K, $[\alpha]_D^{21}$ +4.2 (*c* 0.5, H₂O)}.

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 2. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 3. Packing diagram for the title compound projected along the *c*-axis. Hydrogen bonds are indicated by dotted lines.

Fig. 4. Packing diagram for the title compound projected along the *b*-axis. Hydrogen bonds are indicated by dotted lines.

1-Deoxy-1-fluoro-L-galactitol

F(000) = 196
$D_{\rm x} = 1.552 {\rm Mg m}^{-3}$
Mo K α radiation, $\lambda = 0.71073$ Å
Cell parameters from 828 reflections
$\theta = 5-27^{\circ}$
$\mu = 0.15 \text{ mm}^{-1}$
T = 150 K
Needle, colourless
$0.40 \times 0.10 \times 0.05 \text{ mm}$

Z = 2

Data collection

Area diffractometer	788 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.039$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 5.2^{\circ}$
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997)	$h = -6 \rightarrow 6$
$T_{\min} = 0.88, T_{\max} = 0.99$	$k = -10 \rightarrow 11$
3069 measured reflections	$l = -12 \rightarrow 12$
947 independent reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.095$	Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) + (0.04P)^2 + 0.16P],$ where $P = [\max(F_o^2, 0) + 2F_c^2]/3$
<i>S</i> = 0.99	$(\Delta/\sigma)_{\rm max} = 0.0001$
947 reflections	$\Delta \rho_{max} = 0.35 \text{ e} \text{ Å}^{-3}$
109 parameters	$\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$
1 restraint	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
1.0608 (4)	0.8416 (3)	0.81046 (18)	0.0300
0.8382 (7)	0.7956 (4)	0.6953 (3)	0.0222
0.9617 (6)	0.7729 (3)	0.5690 (3)	0.0165
1.1674 (4)	0.6479 (3)	0.5922 (2)	0.0198
0.7225 (6)	0.7433 (3)	0.4383 (3)	0.0161
0.5806 (5)	0.6003 (2)	0.4502 (2)	0.0195
0.8349 (6)	0.7338 (3)	0.3047 (3)	0.0157
0.9746 (4)	0.8784 (3)	0.2914 (2)	0.0195
0.5959 (7)	0.7026 (4)	0.1752 (3)	0.0192
0.3879 (4)	0.8258 (3)	0.1522 (2)	0.0207
0.7088 (7)	0.6776 (4)	0.0451 (3)	0.0215
0.4930 (5)	0.6156 (3)	-0.0668 (2)	0.0275
0.6950	0.8781	0.6774	0.0260*
0.7491	0.6999	0.7173	0.0258*
1.0631	0.8691	0.5540	0.0186*
	x 1.0608 (4) 0.8382 (7) 0.9617 (6) 1.1674 (4) 0.7225 (6) 0.5806 (5) 0.8349 (6) 0.9746 (4) 0.5959 (7) 0.3879 (4) 0.7088 (7) 0.4930 (5) 0.6950 0.7491 1.0631	x y 1.0608 (4) 0.8416 (3) 0.8382 (7) 0.7956 (4) 0.9617 (6) 0.7729 (3) 1.1674 (4) 0.6479 (3) 0.7225 (6) 0.7433 (3) 0.7225 (6) 0.7433 (3) 0.5806 (5) 0.6003 (2) 0.8349 (6) 0.7338 (3) 0.9746 (4) 0.8784 (3) 0.5959 (7) 0.7026 (4) 0.3879 (4) 0.8258 (3) 0.7088 (7) 0.6156 (3) 0.4930 (5) 0.6156 (3) 0.7491 0.6999 1.0631 0.8691	x y z 1.0608 (4) 0.8416 (3) 0.81046 (18) 0.8382 (7) 0.7956 (4) 0.6953 (3) 0.9617 (6) 0.7729 (3) 0.5690 (3) 1.1674 (4) 0.6479 (3) 0.5922 (2) 0.7225 (6) 0.7433 (3) 0.4383 (3) 0.5806 (5) 0.6003 (2) 0.4502 (2) 0.8349 (6) 0.7338 (3) 0.3047 (3) 0.9746 (4) 0.8784 (3) 0.2914 (2) 0.5959 (7) 0.7026 (4) 0.1752 (3) 0.3879 (4) 0.8258 (3) 0.1522 (2) 0.7088 (7) 0.6176 (4) 0.0451 (3) 0.4930 (5) 0.6156 (3) -0.0668 (2) 0.6950 0.8781 0.6774 0.7491 0.6999 0.7173 1.0631 0.8691 0.5540

supplementary materials

H51	0.5826	0.8297	0.4297	0.0192*
H71	0.9744	0.6473	0.3126	0.0169*
H91	0.4965	0.6083	0.1918	0.0218*
H111	0.7818	0.7757	0.0180	0.0236*
H112	0.8650	0.6017	0.0659	0.0245*
H41	1.0976	0.5692	0.6169	0.0297*
H101	0.4579	0.9011	0.1221	0.0326*
H81	1.0943	0.8692	0.2436	0.0307*
H61	0.4434	0.6205	0.4847	0.0315*
H121	0.3696	0.6866	-0.0851	0.0400*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
F1	0.0335 (11)	0.0350 (11)	0.0187 (9)	0.0018 (10)	0.0002 (8)	-0.0045 (8)
C2	0.0217 (15)	0.0270 (17)	0.0166 (14)	0.0023 (12)	0.0019 (12)	-0.0039 (12)
C3	0.0168 (14)	0.0140 (13)	0.0181 (13)	0.0019 (11)	0.0029 (11)	-0.0004 (11)
O4	0.0176 (11)	0.0202 (11)	0.0222 (10)	0.0029 (8)	0.0054 (8)	0.0048 (8)
C5	0.0162 (14)	0.0136 (14)	0.0194 (14)	0.0000 (11)	0.0058 (11)	0.0011 (11)
06	0.0229 (12)	0.0169 (10)	0.0215 (10)	-0.0052 (9)	0.0109 (9)	-0.0024 (8)
C7	0.0172 (14)	0.0148 (15)	0.0149 (13)	-0.0012 (12)	0.0029 (11)	-0.0027 (11)
08	0.0208 (12)	0.0165 (11)	0.0233 (10)	-0.0033 (9)	0.0094 (9)	-0.0024 (9)
C9	0.0200 (14)	0.0201 (15)	0.0173 (14)	-0.0015 (12)	0.0037 (12)	0.0006 (12)
O10	0.0190 (11)	0.0217 (11)	0.0223 (11)	0.0015 (9)	0.0064 (8)	0.0042 (9)
C11	0.0227 (16)	0.0257 (17)	0.0145 (14)	0.0006 (13)	0.0011 (12)	-0.0018 (13)
012	0.0312 (14)	0.0274 (12)	0.0201 (11)	0.0025 (10)	-0.0017 (10)	-0.0078 (10)

Geometric parameters (Å, °)

F1—C2	1.422 (3)	C7—O8	1.432 (4)
C2—C3	1.504 (4)	С7—С9	1.528 (4)
C2—H21	0.975	С7—Н71	0.992
C2—H22	0.974	O8—H81	0.824
C3—O4	1.441 (4)	C9—O10	1.437 (4)
C3—C5	1.534 (4)	C9—C11	1.513 (4)
С3—Н31	0.987	С9—Н91	0.973
O4—H41	0.816	O10—H101	0.815
C5—O6	1.422 (4)	C11—O12	1.429 (3)
С5—С7	1.530 (3)	C11—H111	0.973
С5—Н51	0.992	C11—H112	0.979
O6—H61	0.825	O12—H121	0.840
F1—C2—C3	109.0 (3)	С5—С7—С9	112.2 (2)
F1—C2—H21	108.1	O8—C7—C9	110.7 (2)
C3—C2—H21	109.9	С5—С7—Н71	109.7
F1—C2—H22	110.2	O8—C7—H71	109.6
С3—С2—Н22	110.4	С9—С7—Н71	107.3
H21—C2—H22	109.1	С7—О8—Н81	111.8
C2—C3—O4	110.5 (2)	С7—С9—О10	111.3 (2)

supplementary materials

C2—C3—C5	110.6 (2)	C7—C9—C11	112.5 (2)
O4—C3—C5	111.3 (2)	O10—C9—C11	110.0 (2)
С2—С3—Н31	108.3	С7—С9—Н91	108.0
O4—C3—H31	107.7	O10-C9-H91	107.0
С5—С3—Н31	108.3	С11—С9—Н91	107.8
C3—O4—H41	110.6	С9—О10—Н101	108.3
C3—C5—O6	110.8 (2)	C9—C11—O12	111.5 (3)
C3—C5—C7	112.5 (2)	С9—С11—Н111	109.2
O6—C5—C7	107.1 (2)	O12—C11—H111	110.9
C3—C5—H51	108.0	С9—С11—Н112	108.9
O6—C5—H51	109.1	O12—C11—H112	107.3
С7—С5—Н51	109.3	H111—C11—H112	109.2
С5—О6—Н61	107.1	C11—O12—H121	104.2
C5—C7—O8	107.3 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C2—H21···O6 ⁱ	0.97	2.49	3.409 (4)	157
O4—H41···O8 ⁱⁱ	0.82	1.94	2.738 (4)	165
O10—H101…O12 ⁱⁱⁱ	0.82	1.95	2.730 (4)	160
O8—H81…O10 ^{iv}	0.82	1.87	2.691 (4)	172
O6—H61…O4 ^v	0.82	1.89	2.703 (4)	170
O12—H121···F1 ^{vi}	0.84	2.08	2.895 (3)	163

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1; (ii) -*x*+2, *y*-1/2, -*z*+1; (iii) -*x*+1, *y*+1/2, -*z*; (iv) *x*+1, *y*, *z*; (v) *x*-1, *y*, *z*; (vi) *x*-1, *y*, *z*-1.

Fig. 1

Fig. 4